The generalized 4-connectivity of hierarchical cubic networks

Shu-Li Zhao ${ }^{\text {a }}$, Rong-Xia Hao ${ }^{\text {a,*, }}$, Jie Wu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Beijing Jiaotong University, Beijing 100044, PR China
${ }^{\mathrm{b}}$ Department of Computer and Information Sciences, Temple University, USA

ARTICLE INFO

Article history:

Received 23 April 2020
Received in revised form 25 August 2020
Accepted 30 September 2020
Available online xxxx

Keywords:

Generalized connectivity
Reliability
Fault tolerance
Hierarchical cubic network

Abstract

Let $S \subseteq V(G)$ and $\kappa_{G}(S)$ denote the maximum number k of edge-disjoint trees T_{1}, T_{2}, \cdots, T_{k} in G such that $V\left(T_{i}\right) \bigcap V\left(T_{j}\right)=S$ for any $i, j \in\{1,2, \cdots, k\}$ and $i \neq j$. For an integer r with $2 \leq r \leq n$, the generalized r-connectivity of a graph G is defined as $\kappa_{r}(G)=\min \left\{\kappa_{G}(S) \mid S \subseteq V(G)\right.$ and $\left.|S|=r\right\}$. In fact, $\kappa_{2}(G)$ is exactly the traditional connectivity of G. In this paper, we focus on $\kappa_{4}\left(H C N_{n}\right)$ of the hierarchical cubic network $H C N_{n}$ and obtain that $\kappa_{4}\left(H C N_{n}\right)=n$ for $n \geq 3$. As a corollary, we obtain that $\kappa_{3}\left(H C N_{n}\right)=$ n for $n \geq 3$.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

An interconnection network is usually modeled by a connected graph $G=(V, E)$, where nodes represent processors and edges represent communication links between processors. The connectivity is one of the important parameters to evaluate the reliability and fault tolerance of a network. The connectivity $\kappa(G)$ of a graph G is defined as the minimum number of vertices whose deletion results in a disconnected graph. Whitney [20] provides another definition of connectivity. For any subset $S=\{u, v\} \subseteq V(G)$, let $\kappa_{G}(S)$ denote the maximum number of internally disjoint paths between u and v in G. Then $\kappa(G)=\min \left\{\kappa_{G}(S) \mid S \subseteq V(G)\right.$ and $\left.|S|=2\right\}$. As a generalization of the traditional connectivity, the generalized r-connectivity was introduced by Hager et al. [8] in 1985.

Let $S \subseteq V(G)$ and $\kappa_{G}(S)$ denote the maximum number k of edge-disjoint trees $T_{1}, T_{2}, \ldots, T_{k}$ in G such that $V\left(T_{i}\right) \bigcap V\left(T_{j}\right)=S$ for any $i, j \in\{1,2, \ldots, k\}$ and $i \neq j$. For an integer r with $2 \leq r \leq n$, the generalized r-connectivity of a graph G is defined as $\kappa_{r}(G)=\min \left\{\kappa_{G}(S) \mid S \subseteq V(G)\right.$ and $\left.|S|=r\right\}$. This is a parameter that can measure the reliability of a network G to connect any r vertices in G. The generalized 2-connectivity is exactly the traditional connectivity. Li et al. [10] derived that it is NP-complete for a general graph G to decide whether there are k internally disjoint trees connecting S, where k is a fixed integer, and $S \subseteq V(G)$. There are some known results [12,14,18] regarding the bounds of generalized connectivity and the relationship between connectivity and generalized connectivity. In addition, there are some known results about generalized r-connectivity for some special classes of graphs. For example, Chartrand et al. [2] studied the generalized connectivity of complete graphs; Li et al. [13] first studied the generalized 3-connectivity of Cartesian product graphs, then Li et al. [15] also studied the generalized 3-connectivity of graph products; Li et al. [11] studied the generalized connectivity of the complete bipartite graphs, Lin et al. [19] studied the generalized 4-connectivity of hypercubes and Zhao et al. studied the generalized 4-connectivity of exchanged hypercubes [25]. Zhao et al. had gotten the generalized 3-connectivity of the regular networks with the property that each vertex has exactly two outside neighbors [26], the (n, k)-bubble-sort graphs [27], the (n, k)-star graphs and alternating group graphs [23] and the Caylay

[^0]graph generated by complete graph and wheel graph [24]. As the Cayley graph has some attractive properties to design interconnection networks, Li et al. [17] studied the generalized 3-connectivity of star graphs and bubble-sort graphs and Li et al. [16] studied the generalized 3-connectivity of the Cayley graph generated by trees and cycles. For more results about the recursive graph and Cayley graph, one can refer to [3] and [9], respectively. So far, there are few results about $\kappa_{r}(G)$ for $r=4$ and almost all known results are about $r=3$. In this paper, we obtain that $\kappa_{4}\left(H C N_{n}\right)=n$ for $n \geq 3$. As a corollary, we obtain that $\kappa_{3}\left(H C N_{n}\right)=n$ for $n \geq 3$.

The paper is organized as follows. In Section 2, some terminologies and notations are introduced. In Section 3, the generalized 4-connectivity of the hierarchical cubic network is determined. As a corollary, the generalized 3-connectivity of the hierarchical cubic network can be obtained directly. In Section 4, the paper is concluded.

2. Preliminary

2.1. Terminologies and notations

Let $G=(V, E)$ be a simple and undirected graph. Let $|V(G)|$ denote the order of the graph G. Let $V^{\prime} \subseteq V(G)$, then $G\left[V^{\prime}\right]$ is the subgraph of G whose vertex set is V^{\prime} and whose edge set consists of all edges of G which have both ends in V^{\prime}. For a vertex $v \in V(G)$, the set of neighbors of v in a graph G is denoted by $N_{G}(v)$ and $N_{G}[v]=N_{G}(v) \cup\{v\}$. Let $d_{G}(v)$ denote the number of edges incident with v and $\delta(G)$ denote the minimum degree of the graph G. A graph is said to be k-regular if for any vertex v of $G, d_{G}(v)=k$. Two $x y$ - paths P and Q in G are internally disjoint if they have no common internal vertices, that is, $V(P) \bigcap V(Q)=\{x, y\}$. Let $Y \subseteq V(G)$ and $X \subset V(G) \backslash Y$, the (X, Y)-paths is a family of internally disjoint paths starting at a vertex $x \in X$, ending at a vertex $y \in Y$ and whose internal vertices belong neither to X nor to Y. If $X=\{x\}$, then the (X, Y)-paths is a family of internal disjoint paths whose starting vertex is x and the terminal vertices are distinct in Y, which is referred to as a k-fan from x to Y. For terminologies and notations not defined here, refer to [1].

Let $[n]=\{1,2, \ldots, n\}$. Let V_{n} be the set of binary sequence of length n, i.e., $V_{n}=\left\{x_{1} x_{2} \cdots x_{n} \mid x_{i} \in\{0,1\}\right.$ and $\left.1 \leq i \leq n\right\}$. For $x=x_{1} x_{2} \cdots x_{n} \in V_{n}$, let $x^{l}=x_{1} \cdots x_{l-1} \bar{x}_{l} x_{l+1} \cdots x_{n}$ and $\bar{x}=\bar{x}_{1} \bar{x}_{2} \cdots \bar{x}_{n} \in V_{n}$, which is called the complement of x, where $\bar{x}_{i} \in\{0,1\} \backslash\left\{x_{i}\right\}$ for each $i \in[n]$.

The hypercube is one of the most fundamental interconnection networks. An n-dimensional hypercube $Q_{n}=(V, E)$ is an undirected graph with $|V|=2^{n}$ and $|E|=n 2^{n-1}$. Each vertex can be represented by an n-bit binary string. There is an edge between two vertices whenever their binary string representation differs in only one bit position. The Hamming distance, denoted by $d_{H}(u, v)$, between any two vertices u and v of Q_{n} is the number of different positions between the binary strings of u and v. It is easy to see that two vertices u and v of the hypercube Q_{n} are adjacent if and only if $d_{H}(u, v)=1$. The hierarchical cubic network was introduced by Ghose and Desai in [7], which can feasibly be implemented with thousands or more processors, while retaining some good properties of the hypercubes, such as regularity, symmetry and logarithmic diameter. Next, we will introduce the definition of the hierarchical cubic network.

2.2. The n-dimensional hierarchical cubic network $H C N_{n}$

The n-dimensional hierarchical cubic network $H C N_{n}$ can be decomposed into 2^{n} clusters, say $C_{1}, C_{2}, \ldots, C_{2^{n}}$, and each cluster is isomorphic to an n-dimensional hypercube Q_{n}. Any node $u \in V\left(H C N_{n}\right)$ is identified by a unique $2 n$-bit binary string, denoted by $u=(c(u), p(u))$, as an id. Each id contains two parts: n-bit cluster-id $c(u)$ and n-bit node-id $p(u)$. An edge in a cluster is called a cube edge, say $E_{c u}\left(H C N_{n}\right)$, and an edge connecting two nodes in two distinct clusters is called a cross edge, denoted by $E_{c r}\left(H C N_{n}\right)$. The set of edges that connects two distinct clusters C_{i} and C_{j} is denoted by $E_{c r}\left(C_{i}, C_{j}\right)$, where $i, j \in\left[2^{n}\right]$. For $u, v \in V\left(H C N_{n}\right)$, let $u=(c(u), p(u))$ and $v=(c(v), p(v))$. There exists an edge $u v \in E\left(H C N_{n}\right)$ if and only if $u v$ belongs to one of the following conditions:
(1) $E_{c u}\left(H C N_{n}\right)=\left\{u v \mid c(u)=c(v)\right.$ and $\left.d_{H}(p(u), p(v))=1\right\}$,
(2) $E_{c r}\left(H C N_{n}\right)=\{u v \mid$ if $c(u)=p(u)$, then $c(v)=p(v)=\overline{c(u)}$, otherwise, $c(u)=p(v)$ and $p(u)=c(v)\}$.

By the definition of hierarchical cubic network, $H C N_{n}$ is an $(n+1)$-regular network. For any vertex v of $H C N_{n}$, it has exactly one neighbor outside the cluster which v belongs to, which is called the outside neighbor of v and denoted by v^{\prime}. An 2-dimensional hierarchical cubic network HCN_{2} is shown as Fig. 1, where the red edges represent the cross edges of HCN_{2}.

There are some known results about $H C N_{n}$, for which one can refer to [4-7,21,22,28] etc. for the detail. By the definition of the hierarchical cubic network $H C N_{n}$, the following result can be obtained.

Lemma 1. Let $C_{1}, C_{2}, \ldots, C_{2^{n}}$ be the 2^{n} clusters of $H C N_{n}$ for $n \geq 3$, then the following results hold.
(1) For $i \in\left[2^{n}\right]$, let $v \in V\left(C_{i}\right)$ with $c(v)=p(v)$. The outside neighbors of distinct vertices in $V\left(C_{i}\right) \backslash\{v\}$ belong to different clusters of $H C N_{n}$. In addition, if $u \in V\left(C_{i}\right) \backslash\{v\}$ with $p(u)=\overline{p(v)}$, the outside neighbor of u belongs to the same cluster as that of v.
(2) For $u \in V\left(C_{i}\right)$ and $v \in V\left(C_{j}\right)$, there are two cross edges between C_{i} and C_{j} for $i \neq j$ and $i, j \in\left[2^{n}\right]$ if and only if $c(u)=\overline{c(v)}$; otherwise there is only one cross edge.
(3) No two vertices in the same cluster of HCN_{n} have a common outside neighbor.

Fig. 1. The 2-dimensional hierarchical cubic network HCN_{2}.

Proof. (1) Let $v_{1}, v_{2} \in V\left(C_{i}\right) \backslash\{v\}$ and $v_{1} \neq v_{2}$. By the definition of $H C N_{n}, c\left(v_{1}\right) \neq p\left(v_{1}\right), c\left(v_{2}\right) \neq p\left(v_{2}\right)$ and $p\left(v_{1}\right) \neq p\left(v_{2}\right)$. Thus, the outside neighbors of v_{1} and v_{2} are $\left(p\left(v_{1}\right), c\left(v_{1}\right)\right)$ and $\left(p\left(v_{2}\right), c\left(v_{2}\right)\right)$, respectively. Since $p\left(v_{1}\right) \neq p\left(v_{2}\right)$, the outside neighbors of v_{1} and v_{2} belong to different clusters of $H C N_{n}$. Since $v \in V\left(C_{i}\right)$ and $c(v)=p(v)$, the outside neighbor of v is $(\overline{c(v)}, \overline{p(v)})$. Let $u \in V\left(C_{i}\right) \backslash\{v\}$, then $c(u) \neq p(u)$ and the outside neighbor of u is $(p(u), c(u))$. When $p(u)=\overline{p(v)}$, the outside neighbors of u and v belong to the same cluster of $H C N_{n}$.
(2) By (1), the result can be obtained directly.
(3) Let $u, v \in V\left(C_{i}\right)$ for $i \in\left[2^{n}\right]$ and assume that they have a common outside neighbor, say w, then u and v are the two outside neighbors of w, which is a contradiction.

Lemma 2. Let $C_{1}, C_{2}, \ldots, C_{2^{n}}$ be the 2^{n} clusters of $H C N_{n}$ for $n \geq 3$, then for any vertex $v \in V\left(C_{i}\right)$ and $i \in\left[2^{n}\right],\left|N_{C_{i}}[v]\right|=n+1$ and the outside neighbors of vertices in $N_{C_{i}}[v]$ belong to different clusters of $H C N_{n}$.

Proof. Without loss of generality, let $v \in V\left(C_{1}\right) . C_{1}$ is isomorphic to the n-dimensional hypercube Q_{n}, which is n-regular, thus $\left|N_{C_{1}}[v]\right|=n+1$. As $n \geq 3$, for any $v_{1}, v_{2} \in N_{C_{1}}[v], p\left(v_{1}\right) \neq \overline{p\left(v_{2}\right)}$. By (1) of Lemma 1 , the outside neighbors of vertices in $N_{\mathrm{C}_{1}}[v]$ belong to different clusters of $H C N_{n}$.

Lemma 3. Let $C_{1}, C_{2}, \ldots, C_{2^{n}}$ be the 2^{n} clusters of $H C N_{n}$ and $H=H C N_{n}\left[\bigcup_{j=1}^{k} V\left(C_{i_{j}}\right)\right]$ for $i_{j} \in\left[2^{n}\right], k \geq 1$ and $n \geq 3$, then H is connected.

Proof. Without loss of generality, let $H=H C N_{n}\left[\bigcup_{j=1}^{k} V\left(C_{j}\right)\right]$. By (2) of Lemma 1, there is at least one cross edge between any two distinct clusters of $H C N_{n}$. Thus, H is connected.

3. The generalized 4-connectivity of the hierarchical cubic network $\boldsymbol{H C N}_{\boldsymbol{n}}$

In this section, we will study the generalized 4-connectivity of hierarchical cubic networks. To prove the main result, the following results are useful.

Lemma 4 ([1]). Let G be a k-connected graph, and let x and y be a pair of distinct vertices in G. Then there exist k internally disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ in G connecting x and y.

Lemma 5 ([1]). Let $G=(V, E)$ be a k-connected graph, and let X and Y be subsets of $V(G)$ of cardinality at least k. Then there exists a family of k pairwise disjoint (X, Y)-paths in G.

Lemma 6 ([1]). Let $G=(V, E)$ be a k-connected graph, let x be a vertex of G, and let $Y \subseteq V(G) \backslash\{x\}$ be a set of at least k vertices of G. Then there exists a k-fan in G from x to Y. That is, there exists a family of k internally disjoint (x, Y)-paths whose terminal vertices are distinct in Y.

The following result is about the connectivity of the hypercube Q_{n}.
Lemma 7 ([1]). $\kappa\left(Q_{n}\right)=n$ for $n \geq 2$.
The following result is about the generalized 4-connectivity of the hypercube Q_{n}.
Theorem 1 ([19]). $\kappa_{4}\left(Q_{n}\right)=n-1$ for $n \geq 2$.
The following result is about the upper bound of $\kappa_{k}(G)$ for a connected graph G.

Lemma 8 ([19]). Let G be a connected graph of order n with minimum degree δ. Then $\kappa_{k}(G) \leq \delta$ for $2 \leq k \leq n$. In particular, if there are two adjacent vertices of degree δ, then $\kappa_{k}(G) \leq \delta-1$ for $3 \leq k \leq n$. Moreover, the upper bounds are sharp in both cases.

The following result is about the relationship between $\kappa_{k}(G)$ and $\kappa_{k-1}(G)$ of a regular graph G.
Lemma 9 ([19]). Let G be an r-regular graph. If $\kappa_{k}(G)=r-1$, then $\kappa_{k-1}(G)=r-1$, where $k \geq 4$.
To prove the generalized 4-connectivity of the n-dimensional hierarchical cubic network $H C N_{n}$ for $n \geq 3$, the following lemmas are useful.

Lemma 10. Let $C_{1}, C_{2}, \ldots, C_{2^{n}}$ be the 2^{n} clusters of $H C N_{n}$ for $n \geq 3$. Let $S=\{x, y, z, w\} \subseteq V\left(H C N_{n}\right)$ such that $\left|S \bigcap V\left(C_{i}\right)\right|=3$ and $\left|S \bigcap V\left(C_{j}\right)\right|=1$ for distinct $i, j \in\left[2^{n}\right]$, then there are n internally disjoint trees connecting S in $H C N_{n}$.

Proof. Without loss of generality, let $\left|S \bigcap V\left(C_{1}\right)\right|=3$ and $\left|S \bigcap V\left(C_{2}\right)\right|=1$. Let $\{x, y, z\} \subseteq V\left(C_{1}\right)$ and $w \in V\left(C_{2}\right)$. See Fig. 2 . Recall that $v=(c(v), p(v))$ for each $v \in V\left(H C N_{n}\right)$. As $x \neq z$, assume that $p^{n}(x) \neq p^{n}(z)$ and let $p(x)=a_{1} a_{2} \cdots a_{n-1} 0$ and $p(z)=b_{1} b_{2} \cdots b_{n-1} 1$. As C_{i} is a copy of Q_{n} for each $i \in\left[2^{n}\right]$, we assume that the nth digit of $p(y)$ is 0 . Divide C_{1} along the nth digit of the node-id into two copies of Q_{n-1}, denoted by Q_{n-1}^{0} and Q_{n-1}^{1}, respectively. Thus, $x, y \in V\left(Q_{n-1}^{0}\right)$ and $z \in V\left(Q_{n-1}^{1}\right)$. By Lemma $7, \kappa\left(Q_{n-1}^{0}\right)=n-1$, then there are $n-1$ internally disjoint paths $P_{1}, P_{2}, \ldots, P_{n-1}$ between x and y in Q_{n-1}^{0}. Let $x_{i} \in V\left(P_{i}\right)$ such that $y_{i} \in V\left(Q_{n-1}^{1}\right) \backslash\{z\}$, where y_{i} is the neighbor of x_{i} in Q_{n-1}^{1} and $1 \leq i \leq n-1$. This can be done as P_{i} s are internally disjoint for $1 \leq i \leq n-1$. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n-1}\right\}$. By Lemma $7, \kappa\left(Q_{n-1}^{1}\right)=n-1$. By Lemma 6 , there are $n-1$ internally disjoint paths $P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{n-1}^{\prime}$ from z to Y in Q_{n-1}^{1}. Let $\widehat{T}_{i}=P_{i} \bigcup x_{i} y_{i} \bigcup P_{i}^{\prime}$ for each $i \in[n-1]$, then $n-1$ internally disjoint trees \widehat{T}_{i} s that connecting x, y and z are obtained in C_{1}.

Note that $X=\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\}$, it is possible that $x \in X$ or $y \in X$. To avoid duplication, we just consider the case that $x \notin X$ and $y \notin X$. Let $X^{\prime}=X \cup\{x, y\}$. By (1) of Lemma 1, the outside neighbors of vertices in X^{\prime} belong to different clusters of $H C N_{n}$. Thus, there is at most one vertex of X^{\prime} with the outside neighbor belonging to C_{2}. To obtain the main result, the following two cases are considered.

Case 1. There is one vertex in X^{\prime} with the outside neighbor belonging to C_{2}.
Without loss of generality, let $x_{1}^{\prime} \in V\left(C_{2}\right), x_{i}^{\prime} \in V\left(C_{i+1}\right)$ for $2 \leq i \leq n-1, x^{\prime} \in V\left(C_{n+1}\right)$ and $y^{\prime} \in V\left(C_{n+2}\right)$. By (2) of Lemma 1, there is an edge $w_{i} w_{i}^{\prime} \in E_{c r}\left(C_{i+1}, C_{2}\right)$ such that $w_{i} \in V\left(C_{i+1}\right)$ and $w_{i}^{\prime} \in V\left(C_{2}\right)$ for $2 \leq i \leq n-1$. Let $W^{\prime}=\left\{x_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{n-1}^{\prime}\right\}$, then the following subcases are considered depending on the outside neighbor z^{\prime} of z.

Subcase 1.1. $z^{\prime} \in V\left(C_{2}\right)$.
As any vertex of $H C N_{n}$ has exactly one outside neighbor, $z^{\prime} \notin W^{\prime}$. Let $W=W^{\prime} \cup\left\{z^{\prime}\right\}=\left\{x_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{n-1}^{\prime}, z^{\prime}\right\}$, thus $|W|=n$.

If $w \notin W$, by (2) of Lemma $1, w^{\prime} \notin \cup_{i=1}^{n} V\left(C_{i}\right)$. Without loss of generality, let $w^{\prime} \in V\left(C_{n+3}\right)$. See Fig. 2. By Lemma 7 , $\kappa\left(C_{2}\right)=n$. By Lemma 4, there are n internally disjoint paths $W_{1}, W_{2}, \ldots, W_{n}$ from w to W such that $x_{1}^{\prime} \in W_{1}, w_{i}^{\prime} \in W_{i}$ for $2 \leq i \leq n-1$ and $z^{\prime} \in W_{n}$. As C_{i+1} is connected, there is a path \widehat{P}_{i} between x_{i}^{\prime} and w_{i} in C_{i+1} for $2 \leq i \leq n-1$. By Lemma $\left.3, H C N_{n}[\cup \cup=n+1) V\left(C_{i}\right)\right]$ is connected, so it contains a tree T that connects x^{\prime}, y^{\prime} and w^{\prime}. Let $T_{1}=\widehat{T}_{1} \cup W_{1} \cup x_{1} x_{1}^{\prime}$, $T_{i}=\widehat{T}_{i} \cup \widehat{P}_{i} \cup W_{i} \cup x_{i} X_{i}^{\prime} \cup w_{i} w_{i}^{\prime}$ for $2 \leq i \leq n-1$ and $T_{n}=W_{n} \cup T \cup x x^{\prime} \cup y y^{\prime} \cup z z^{\prime} \cup w w^{\prime}$, then n internally disjoint S-trees T_{i} s for $1 \leq i \leq n$ are obtained in $H C N_{n}$.

If $w \in W$, let $\widehat{W}=(W \backslash\{w\}) \cup\{v\}$ for $v \in V\left(C_{2}\right)$ and $v^{\prime} \in V\left(C_{n+3}\right)$. By (2) of Lemma 1 , this can be done. Similar as $w \notin W, n$ internally disjoint S-trees $T_{i} S$ for $1 \leq i \leq n$ can be obtained in $H C N_{n}$.

Subcase 1.2. $z^{\prime} \in V\left(C_{i+1}\right)$ for some $i \in[n-1] \backslash[1]$.
Without loss of generality, let $z^{\prime} \in V\left(C_{3}\right)$. See Fig. 3. Since $z^{\prime}, x_{2}^{\prime} \in V\left(C_{3}\right)$, by (2) of Lemma $1, y_{2}^{\prime} \notin \cup_{i=1}^{n+2} V\left(C_{i}\right)$. Without loss of generality, let $y_{2}^{\prime} \in V\left(C_{n+3}\right)$. By (2) of Lemma 1, there are edges $a a^{\prime} \in E_{c r}\left(C_{n+3}, C_{2}\right)$ and $b b^{\prime} \in E_{c r}\left(C_{n+2}, C_{2}\right)$ such that $a \in V\left(C_{n+3}\right), b \in V\left(C_{n+2}\right)$, and $a^{\prime}, b^{\prime} \in V\left(C_{2}\right)$. Recall that there is an edge $w_{i} w_{i}^{\prime} \in E_{c r}\left(C_{i+1}, C_{2}\right)$ such that $w_{i} \in V\left(C_{i+1}\right)$ and $w_{i}^{\prime} \in V\left(C_{2}\right)$ for $3 \leq i \leq n-1$. Let $W=\left\{x_{1}^{\prime}, a^{\prime}, w_{3}^{\prime}, \ldots, w_{n-1}^{\prime}, b^{\prime}\right\}$. By Lemma $7, \kappa\left(C_{2}\right)=n$. By Lemma 4 , there are n internally disjoint paths $W_{1}, W_{2}, \ldots, W_{n}$ from w to W such that $x_{1}^{\prime} \in W_{1}, a^{\prime} \in W_{2}, w_{i}^{\prime} \in W_{i}$ for $3 \leq i \leq n-1$ and $b^{\prime} \in W_{n}$. As C_{i+1} is connected, there is a path \widehat{P}_{i} between x_{i}^{\prime} and w_{i} in C_{i+1} for $3 \leq i \leq n-1$ and there is a path P between y_{2}^{\prime} and a in C_{n+3}. By Lemma 3, $\operatorname{HCN}_{n}\left[V\left(C_{3} \cup C_{n+1} \cup C_{n+2}\right)\right]$ is connected, thus it contains a tree T that connects $x^{\prime}, y^{\prime}, z^{\prime}$ and b. Let $T_{1}=\widehat{T}_{1} \cup W_{1} \cup x_{1} x_{1}^{\prime}, T_{2}=\widehat{T_{2}} \cup W_{2} \cup P \cup \cup y_{2} y_{2}^{\prime} \cup a a^{\prime}, T_{i}=\widehat{T}_{i} \cup \widehat{P}_{i} \cup W_{i} \cup x_{i} x_{i}^{\prime} \cup w_{i} w_{i}^{\prime}$ for $3 \leq i \leq n-1$ and $T_{n}=W_{n} \cup T \cup b b^{\prime} \cup x x^{\prime} \cup y y^{\prime} \cup z z^{\prime}$, then n internally disjoint S-trees are obtained in $H C N_{n}$.

Subcase 1.3. $z^{\prime} \in V\left(H C N_{n}\right) \backslash \cup_{i=1}^{n} V\left(C_{i}\right)$.
Without loss of generality, let $z^{\prime} \in V\left(C_{n+1}\right)$. By (2) of Lemma 1, there is an edge $a a^{\prime} \in E_{c r}\left(C_{n+2}, C_{2}\right)$ such that $a \in V\left(C_{n+2}\right)$ and $a^{\prime} \in V\left(C_{2}\right)$. See Fig. 4. Recall that there is an edge $w_{i} w_{i}^{\prime} \in E_{c r}\left(C_{i+1}, C_{2}\right)$ such that $w_{i} \in V\left(C_{i+1}\right)$ and $w_{i}^{\prime} \in V\left(C_{2}\right)$ for $2 \leq i \leq n-1$. Let $W=\left\{x_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}, \ldots, w_{n-1}^{\prime}, a^{\prime}\right\}$. By Lemma $7, \kappa\left(C_{2}\right)=n$. By Lemma 4, there are n internally disjoint paths $W_{1}, W_{2}, \ldots, W_{n}$ from w to W such that $x_{1}^{\prime} \in W_{1}, w_{i}^{\prime} \in W_{i}$ for $2 \leq i \leq n-1$ and $a^{\prime} \in W_{n}$. As C_{i+1} is connected, there is a path \widehat{P}_{i} between x_{i}^{\prime} and w_{i} for $2 \leq i \leq n-1$ in C_{i+1}. By Lemma 3, $H C N_{n}\left[V\left(C_{n+1} \cup C_{n+2}\right)\right]$ is connected, thus it contains a tree T connecting $x^{\prime}, y^{\prime}, z^{\prime}$ and a. Let $T_{1}=\widehat{T_{1}} \cup W_{1} \cup x_{1} x_{1}^{\prime}, T_{i}=\widehat{T}_{i} \cup \widehat{P}_{i} \cup W_{i} \cup x_{i} x_{i}^{\prime} \cup w_{i} w_{i}^{\prime}$ for $2 \leq i \leq n-1$ and $T_{n}=W_{n} \cup T \cup a a^{\prime} \cup x x^{\prime} \cup y y^{\prime} \cup z z^{\prime}$, then the result is obtained.

Fig. 2. The illustration of $z^{\prime} \in V\left(C_{2}\right)$.

Fig. 3. The illustration of $z^{\prime} \in V\left(C_{3}\right)$.

Fig. 4. The illustration of $z^{\prime} \in V\left(C_{n+1}\right)$.

Case 2. None of the vertices in X^{\prime} have their outside neighbors belonging to C_{2}.
Without loss of generality, let $x_{i}^{\prime} \in V\left(C_{i+2}\right)$ for $1 \leq i \leq n-1, x^{\prime} \in V\left(C_{n+2}\right)$ and $y^{\prime} \in V\left(C_{n+3}\right)$. To prove the result, the following subcases are considered.

Subcase 2.1. $z^{\prime} \in V\left(C_{2}\right)$.

Fig. 5. The illustration of Subcase 2.1.1.

By (2) of Lemma 1, there is an edge $w_{i} w_{i}^{\prime} \in E_{c r}\left(C_{i+2}, C_{2}\right)$ such that $w_{i} \in V\left(C_{i+2}\right)$ and $w_{i}^{\prime} \in V\left(C_{2}\right)$ for $1 \leq i \leq n-1$. Let $W=\left\{w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{n-1}^{\prime}, z^{\prime}\right\}$. By Lemma $7, \kappa\left(C_{2}\right)=n$. By Lemma 4 , there are n internally disjoint paths $W_{1}, W_{2}, \ldots, W_{n}$ from w to W such that $w_{i}^{\prime} \in W_{i}$ for $1 \leq i \leq n-1$ and $z^{\prime} \in W_{n}$. As C_{i+2} is connected, there is a path \widehat{P}_{i} between x_{i}^{\prime} and w_{i} in C_{i+2} for $1 \leq i \leq n-1$. Consequently, we just consider $z^{\prime} \neq w$ and $w_{i}^{\prime} \neq w$ for each $i \in[n-1]$ by the location of w^{\prime} as the discussions for $z^{\prime}=w$ or $w_{i}^{\prime}=w$ for some $i \in[n-1]$ are similar.

Subcase 2.1.1. $w^{\prime} \in V\left(C_{1}\right)$
In this case, $w w^{\prime}, z z^{\prime} \in E_{c r}\left(C_{1}, C_{2}\right)$ and $z^{\prime}, w \in V\left(C_{2}\right)$. By (1) of Lemma $1, p\left(z^{\prime}\right)=\overline{p(w)}$. Thus, $d_{H}\left(z^{\prime}, w\right)=n \geq 3$. Recall that W_{n} is the path from z^{\prime} to w in C_{2}, so there is a vertex $v \in V\left(W_{n}\right) \backslash\left\{z^{\prime}, w\right\}$. See Fig. 5. As $w w^{\prime}, z z^{\prime} \in E_{c r}\left(C_{1}, C_{2}\right)$, by (2) of Lemma 1, $v^{\prime} \notin \cup_{i=1}^{n+1} V\left(C_{i}\right)$. That is, $v^{\prime} \in \cup_{i=n+2}^{2^{n}} V\left(C_{i}\right)$. As $H C N_{n}\left[\cup_{i=n+2}^{2^{n}} V\left(C_{i}\right)\right]$ is connected, it contains a tree T connecting x^{\prime}, y^{\prime} and v^{\prime}. Let $T_{i}=\widehat{T}_{i} \cup \widehat{P}_{i} \cup W_{i} \cup x_{i} x_{i}^{\prime} \cup w_{i} w_{i}^{\prime}$ for $1 \leq i \leq n-1$ and $T_{n}=T \cup W_{n} \cup x x^{\prime} \cup y y^{\prime} \cup z z^{\prime} \cup v v^{\prime}$, then n internally disjoint S-trees $T_{i} \mathrm{~s}$ for $1 \leq i \leq n$ are obtained in $H_{C N}$.

Subcase 2.1.2. $w^{\prime} \in V\left(C_{i+2}\right)$ for some $i \in[n-1]$
Without loss of generality, let $w^{\prime} \in V\left(C_{3}\right)$. See Fig. 6. By (2) of Lemma 1, there is an edge $a a^{\prime} \in E_{c r}\left(C_{n+2}, C_{3}\right)$ such that $a \in V\left(C_{n+2}\right)$ and $a^{\prime} \in V\left(C_{3}\right)$. Let $S=\left\{x_{1}^{\prime}, w^{\prime}\right\}$ and $T=\left\{w_{1}, a^{\prime}\right\}$. By Lemma 5, there are two internally disjoint (S, T)-paths, say \widehat{P} and P, such that \widehat{P} is the path from x_{1}^{\prime} to w_{1} and P is the path from w^{\prime} to a^{\prime}. Let $H=H C N_{n}\left[V\left(C_{n+2} \cup C_{n+3}\right)\right]$. By Lemma $3, H$ is connected. Thus, there is a tree T connecting x^{\prime}, a and y^{\prime} in H. Let $T_{1}=\widehat{T_{1}} \cup \widehat{P} \cup W_{1} \cup x_{1} x_{1}^{\prime} \cup w_{1} w_{1}^{\prime}, T_{i}=$ $\widehat{T}_{i} \cup \widehat{P}_{i} \cup W_{i} \cup x_{i} x_{i}^{\prime} \cup w_{i} w_{i}^{\prime}$ for $2 \leq i \leq n-1$, and $T_{n}=W_{n} \cup P \cup T \cup \cup x x^{\prime} \cup y y^{\prime} \cup z z^{\prime} \cup w w^{\prime} \cup a a^{\prime}$, then n internally disjoint S-trees T_{i} for $1 \leq i \leq n$ are obtained in $H C N_{n}$.

Subcase 2.1.3. $w^{\prime} \in \cup_{i=n+2}^{2^{n}} V\left(C_{i}\right)$
By Lemma 3, $H C N_{n}\left[\cup_{i=n+2}^{2^{n}} V\left(C_{i}\right)\right]$ is connected and it has a tree T connecting x^{\prime}, y^{\prime} and w^{\prime}. Let $T_{i}=\widehat{T_{i}} \cup \widehat{P_{i}} \cup W_{i} \cup x_{i} x_{i}^{\prime} \cup w_{i} w_{i}^{\prime}$ for $1 \leq i \leq n-1$ and $T_{n}=W_{n} \cup T \cup x x^{\prime} \cup y y^{\prime} \cup z z^{\prime} \cup w w^{\prime}$, then n internally disjoint S-trees are obtained in $H C N_{n}$.

Subcase 2.2. $z^{\prime} \in V\left(C_{i+2}\right)$ for some $i \in[n-1]$.
Without loss of generality, let $z^{\prime} \in V\left(C_{3}\right)$, then $x_{1} x_{1}^{\prime}, z z^{\prime} \in E_{c r}\left(C_{1}, C_{3}\right)$. See Fig. 7. By (2) of Lemma $1, y_{1}^{\prime} \notin \cup_{i=1}^{n+3} V\left(C_{i}\right)$. Without loss of generality, let $y_{1}^{\prime} \in V\left(C_{n+4}\right)$. By (2) of Lemma 1, there are edges $a a^{\prime} \in E_{c r}\left(C_{n+3}, C_{2}\right)$ and $b b^{\prime} \in E_{c r}\left(C_{n+4}, C_{2}\right)$ such that $a \in V\left(C_{n+3}\right), b \in V\left(C_{n+4}\right)$ and $a^{\prime}, b^{\prime} \in V\left(C_{2}\right)$. Recall that there is an edge $w_{i} w_{i}^{\prime} \in E_{c r}\left(C_{i+2}, C_{2}\right)$ such that $w_{i} \in V\left(C_{i+2}\right)$ and $w_{i}^{\prime} \in C_{2}$ for $2 \leq i \leq n-1$. Let $W=\left\{b^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}, \ldots, w_{n-1}^{\prime}, a^{\prime}\right\}$. By Lemma $7, \kappa\left(C_{2}\right)=n$. By Lemma 4, there are n internally disjoint paths $W_{1}, W_{2}, \ldots, W_{n}$ from w to W such that $b^{\prime} \in W_{1}, w_{i}^{\prime} \in W_{i}$ for $2 \leq i \leq n-1$ and $a^{\prime} \in W_{n}$. As C_{i} is connected for each $i \in\left[2^{n}\right]$, there is a path P between y_{1}^{\prime} and b in C_{n+4} and there is a path \widehat{P}_{i} between x_{i}^{\prime} and w_{i} in C_{i+2} for $2 \leq i \leq n-1$. Let $H=H_{C N}\left[V\left(C_{3} \cup C_{n+2} \cup C_{n+3}\right)\right]$. By Lemma $3, H$ is connected. Thus, there is a tree T connecting $x^{\prime}, y^{\prime}, z^{\prime}$ and a in H. Let $T_{1}=\widehat{T}_{1} \cup P \cup W_{1} \cup y_{1} y_{1}^{\prime} \cup b b^{\prime}, T_{i}=\widehat{T}_{i} \cup \widehat{P}_{i} \cup W_{i} \cup x_{i} x_{i}^{\prime} \cup w_{i} w_{i}^{\prime}$ for $2 \leq i \leq n-1$ and $T_{n}=W_{n} \cup T \cup a a^{\prime} \cup x x^{\prime} \cup y y^{\prime} \cup z z^{\prime}$, then n internally disjoint S-trees are obtained in $H C N_{n}$.

Subcase 2.3. $z^{\prime} \in \cup_{i=n+2}^{2^{n}} V\left(C_{i}\right)$.
Let $H=H C N_{n}\left[\cup_{i=n+2}^{2^{n}} V\left(C_{i}\right)\right]$. By Lemma 3, H is connected. By (2) of Lemma 1, there are edges $w_{i} w_{i}^{\prime} \in E_{c r}\left(C_{i+2}, C_{2}\right)$ such that $w_{i} \in V\left(C_{i+2}\right)$ and $w_{i}^{\prime} \in V\left(C_{2}\right)$ for $1 \leq i \leq n-1$ and $a a^{\prime} \in E_{c r}\left(C_{n+3}, C_{2}\right)$ such that $a \in V\left(C_{n+3}\right)$ and $a^{\prime} \in V\left(C_{2}\right)$. Let $W=\left\{w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}, \ldots, w_{n-1}^{\prime}, a^{\prime}\right\}$. By Lemma $7, \kappa\left(C_{2}\right)=n$. By Lemma 4 , there are n internally disjoint paths $W_{1}, W_{2}, \ldots, W_{n}$ from w to W such that $w_{i}^{\prime} \in W_{i}$ for $1 \leq i \leq n-1$ and $a^{\prime} \in W_{n}$. As C_{i+2} is connected, it contains a path \widehat{P}_{i} between x_{i}^{\prime} and w_{i} in C_{i+2} for $1 \leq i \leq n-1$. As H is connected, it contains a tree T connecting $x^{\prime}, y^{\prime}, z^{\prime}$ and a. Let $T_{i}=\widehat{T}_{i} \cup \widehat{P}_{i} \cup W_{i} \cup x_{i} x_{i}^{\prime} \cup w_{i} w_{i}^{\prime}$ for $1 \leq i \leq n-1$ and $T_{n}=W_{n} \cup T \cup a a^{\prime} \cup x x^{\prime} \cup y y^{\prime} \cup z z^{\prime}$, thus n internally disjoint S-trees are obtained in $H C N_{n}$.

Lemma 11. Let $C_{1}, C_{2}, \ldots, C_{2^{n}}$ be the 2^{n} clusters of $H C N_{n}$ for $n \geq 3$. Let $S=\{x, y, z, w\} \subseteq V\left(H C N_{n}\right)$ such that $\left|S \bigcap V\left(C_{i}\right)\right|=2$ and $\left|S \bigcap V\left(C_{j}\right)\right|=2$ for distinct $i, j \in\left[2^{n}\right]$, then there are n internally disjoint trees connecting S in $H C N_{n}$.

Fig. 6. The illustration of Subcase 2.1.2.

Fig. 7. The illustration of Subcase 2.2.

Proof. Without loss of generality, let $\left|S \bigcap V\left(C_{1}\right)\right|=2$ and $\left|S \bigcap V\left(C_{2}\right)\right|=2$. Let $\{x, y\} \subseteq V\left(C_{1}\right)$ and $\{z, w\} \subseteq V\left(C_{2}\right)$. See Fig. 8. By Lemma 7, $\kappa\left(C_{1}\right)=\kappa\left(C_{2}\right)=n$, then there are n internally disjoint paths $P_{1}, P_{2}, \ldots, P_{n}$ between x and y in C_{1} and n internally disjoint paths $P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{n}^{\prime}$ between z and w in C_{2}. Let $x_{i} \in V\left(P_{i}\right) \cap N(x)$ and $z_{i} \in V\left(P_{i}^{\prime}\right) \cap N(z)$ for $1 \leq i \leq n$. Let $\widehat{X}=\left\{x, x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\widehat{Z}=\left\{z, z_{1}, z_{2}, \ldots, z_{n}\right\}$. Choose n vertices from \widehat{X}, denoted by X, such that the outside neighbor of any vertex in X does not belong to C_{2}. Similarly, choose n vertices from \widehat{Z}, denoted by Z, such that the outside neighbor of any vertex in Z does not belong to C_{1}. By Lemma 2 , this can be done. Without loss of generality, let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $Z=\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$. Let $X^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ and $Z^{\prime}=\left\{z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{n}^{\prime}\right\}$, where x_{i}^{\prime} and z_{i}^{\prime} are the outside neighbors of x_{i} and z_{i}, respectively. By Lemma 2, the vertices in X^{\prime} (resp. Z^{\prime}) belong to different clusters of $H C N_{n}$. Without loss of generality, let $x_{i}^{\prime} \in V\left(C_{i+2}\right)$ for $1 \leq i \leq n$. By the location of the vertices in Z^{\prime}, the following two cases need to be considered.

Case 1. The vertices in $X^{\prime} \cup Z^{\prime}$ belong to different clusters of $H C N_{n}$.
Without loss of generality, let $z_{i}^{\prime} \in V\left(C_{n+2+i}\right)$ for $i \in[n]$. As $2^{n} \geq 2 n+2$ for $n \geq 3$, this can be done. By Lemma 3 , $H C N_{n}\left[V\left(C_{i} \bigcup C_{n+2+i}\right)\right]$ is connected for each $i \in[n]$. Then there is a path \widehat{P}_{i} between x_{i}^{\prime} and z_{i}^{\prime} in $H C N_{n}\left[V\left(C_{i} \bigcup C_{n+2+i}\right)\right]$ for each $i \in[n]$. Let $T_{i}=P_{i} \bigcup P_{i}^{\prime} \cup \widehat{P}_{i} \cup x_{i} x_{i}^{\prime} \cup z_{i} z_{i}^{\prime}$ for each $i \in[n]$, thus n internally disjoint S-trees $T_{i} s$ for $1 \leq i \leq n$ are obtained in HCN_{n}.

Case 2. There exists an element of X^{\prime} which belongs to the same cluster with some element of Z^{\prime}.
Without loss of generality, let x_{i}^{\prime} and z_{i}^{\prime} belong to the same cluster for $1 \leq i \leq m$, where $1 \leq m \leq n$. In addition, let $z_{i}^{\prime} \in V\left(C_{n+2-m+i}\right)$ for $m+1 \leq i \leq n$. As C_{i} is connected, there is a path \widehat{P}_{i} between x_{i}^{\prime} and z_{i}^{\prime} in C_{i} for $1 \leq i \leq m$. In addition, there is a path \widehat{P}_{i} between x_{i}^{\prime} and z_{i}^{\prime} in $H C N_{n}\left[V\left(C_{i} \cup C_{n+2-m+i}\right)\right]$, as it is connected for $m+1 \leq i \leq n$. Let $T_{i}=P_{i} \cup P_{i}^{\prime} \cup \widehat{P_{i}} \cup x_{i} X_{i}^{\prime} \cup z_{i} z_{i}^{\prime}$ for each $i \in[n]$, then n internally disjoint S-trees T_{i} s for $1 \leq i \leq n$ are obtained in $H C N_{n}$.

Recall that the n-dimensional hierarchical cubic network $H C N_{n}$ can be decomposed into 2^{n} clusters, say $C_{1}, C_{2}, \ldots, C_{2^{n}}$. As C_{i} is isomorphic to an n-dimensional hypercube Q_{n} for each $i \in\left[2^{n}\right]$, by Lemma $7, \kappa\left(C_{i}\right)=n$. Let $x, y \in V\left(C_{1}\right)$, then

Fig. 8. The illustration of Case 1

Fig. 9. The illustration of $y^{\prime} \in V\left(C_{2}\right)$.
there are n internally disjoint paths $P_{1}, P_{2}, \ldots, P_{n}$ between x and y in C_{1}. By the known result, we have the following lemma.

Lemma 12. Let $C_{1}, C_{2}, \ldots, C_{2^{n}}$ be the 2^{n} clusters of $H C N_{n}$ for $n \geq 3$. Let $S=\{x, y, z, w\} \subseteq V\left(H C N_{n}\right)$ such that $x, y \in V\left(C_{1}\right), z \in V\left(C_{2}\right)$ and $w \in V\left(C_{3}\right)$. Let $P_{1}, P_{2}, \ldots, P_{n}$ be the n internally disjoint paths between x and y in C_{1}. Let $x_{i} \in N(x) \cap V\left(P_{i}\right)$ for $i \in[n]$ and $N[x]=\left\{x, x_{1}, x_{2}, \ldots, x_{n}\right\}$. If there are two cross edges between $N[x]$ and $V\left(C_{2} \cup C_{3}\right)$, then there are n internally disjoint trees connecting S in $H C N_{n}$.

Proof. Let x^{\prime}, y^{\prime} and x_{i}^{\prime} be the outside neighbors of x, y and x_{i} for $1 \leq i \leq n$, respectively. By Lemma 2 , the outside neighbors of vertices in $N[x]$ belong to different clusters of $H C N_{n}$. Consequently, we just consider the case for $y \notin N[x]$ as the discussion for $y \in N[x]$ is similar.

Case 1. $x_{i}^{\prime} \in V\left(C_{2}\right)$ and $x_{j}^{\prime} \in V\left(C_{3}\right)$ for some two distinct $i, j \in[n]$.
Without loss of generality, let $x_{1}^{\prime} \in V\left(C_{2}\right), x_{2}^{\prime} \in V\left(C_{3}\right), x_{i}^{\prime} \in V\left(C_{i+1}\right)$ for $3 \leq i \leq n$ and $x^{\prime} \in V\left(C_{n+2}\right)$.
If $y^{\prime} \in V\left(C_{2}\right)$, by (2) of Lemma 1 , there is an edge $z_{i} z_{i}^{\prime} \in E_{c r}\left(C_{i+1}, C_{2}\right)$ such that $z_{i} \in V\left(C_{i+1}\right)$ and $z_{i}^{\prime} \in V\left(C_{2}\right)$ for $3 \leq i \leq n$. See Fig. 9. In addition, there is an edge $w_{i} w_{i}^{\prime} \in E_{c r}\left(C_{i+1}, C_{3}\right)$ such that $w_{i} \in V\left(C_{i+1}\right)$ and $w_{i}^{\prime} \in V\left(C_{3}\right)$ for $3 \leq i \leq n+1$. Let $Z=\left\{x_{1}^{\prime}, y^{\prime}, z_{3}^{\prime}, \ldots, z_{n}^{\prime}\right\}$ and $W=\left\{x_{2}^{\prime}, w_{3}^{\prime}, w_{4}^{\prime}, \ldots, w_{n+1}^{\prime}\right\}$. By Lemma $7, \kappa\left(C_{2}\right)=\kappa\left(C_{3}\right)=n$. By Lemma 4, there are n internally disjoint paths $Z_{1}, Z_{2}, \ldots, Z_{n}$ from z to Z and n internally disjoint paths $W_{1}, W_{2}, \ldots, W_{n}$ from w to W such that $x_{1}^{\prime} \in Z_{1}, y^{\prime} \in Z_{2}, z_{i}^{\prime} \in Z_{i}$ for $3 \leq i \leq n, x_{2}^{\prime} \in W_{1}$ and $w_{i}^{\prime} \in W_{i-1}$ for $3 \leq i \leq n+1$. As C_{n+2} is connected, there is a path P between x^{\prime} and w_{n+1} in C_{n+2}. In addition, there is a tree \widehat{T}_{i} connecting x_{i}^{\prime}, z_{i} and w_{i} in C_{i+1} for $3 \leq i \leq n$. Let $T_{1}=P_{1} \cup Z_{1} \cup P \cup W_{n} \cup x_{1} x_{1}^{\prime} \cup x x^{\prime} \cup w_{n+1} w_{n+1}^{\prime}, T_{2}=P_{2} \cup Z_{2} \cup W_{1} \cup y y^{\prime} \cup x_{2} x_{2}^{\prime}$ and $T_{i}=P_{i} \cup \widehat{T_{i}} \cup Z_{i} \cup W_{i-1} \cup x_{i} x_{i}^{\prime} \cup z_{i} z_{i}^{\prime} \cup w_{i} w_{i}^{\prime}$ for $3 \leq i \leq n$, then n internally disjoint trees connecting S are obtained in $H C N_{n}$.

If $y^{\prime} \in V\left(C_{3}\right)$, similar as $y^{\prime} \in V\left(C_{2}\right), n$ internally disjoint trees connecting S can be obtained in $H C N_{n}$.
If $y^{\prime} \in V\left(C_{i+1}\right)$ for some $3 \leq i \leq n$, without loss of generality, let $y^{\prime} \in V\left(C_{4}\right)$. See Fig. 10. As $2^{n}>n+3$ for $n \geq 3$, there is a cluster, say C_{n+3}. By (2) of Lemma 1, there is an edge $a a^{\prime} \in E_{c r}\left(C_{n+2}, C_{2}\right)$ such that $a \in V\left(C_{n+2}\right)$ and $a^{\prime} \in V\left(C_{2}\right)$. In addition, there are edges $v v^{\prime} \in E_{c r}\left(C_{4}, C_{3}\right), b b^{\prime} \in E_{c r}\left(C_{n+3}, C_{2}\right), c c^{\prime} \in E_{c r}\left(C_{n+3}, C_{3}\right)$ and $u u^{\prime} \in E_{c r}\left(C_{4}, C_{n+3}\right)$

Fig. 10. The illustration of $y^{\prime} \in V\left(C_{4}\right)$.

$(3 \leq i \leq n)$
Fig. 11. The illustration of $y^{\prime} \in V\left(C_{n+2}\right)$.
such that $v \in V\left(C_{4}\right), v^{\prime} \in V\left(C_{3}\right), b, c, u^{\prime} \in V\left(C_{n+3}\right), b^{\prime} \in V\left(C_{2}\right), c^{\prime} \in V\left(C_{3}\right)$ and $u \in V\left(C_{4}\right)$. In addition, there are edges $z_{i} z_{i}^{\prime} \in E_{c r}\left(C_{i+1}, C_{2}\right)$ and $w_{i} w_{i}^{\prime} \in E_{c r}\left(C_{i+1}, C_{3}\right)$ such that $z_{i}, w_{i} \in V\left(C_{i+1}\right), z_{i}^{\prime} \in V\left(C_{2}\right)$ and $w_{i}^{\prime} \in V\left(C_{3}\right)$ for $4 \leq i \leq n$. As C_{i} is connected for each $i \in\left[2^{n}\right]$, there is a path P between x^{\prime} and a in C_{n+2}, there is a tree T connecting u^{\prime}, b and c in C_{n+3} and there is a tree T_{i}^{\prime} connecting x_{i}^{\prime}, z_{i} and w_{i} in C_{i} for $4 \leq i \leq n$. As $\kappa\left(C_{4}\right)=n \geq 3$, let $S=\left\{x_{3}^{\prime}, y^{\prime}\right\}$ and $T=\{u, v\}$. By Lemma 5, there are two disjoint paths from S to T, say R_{1} and R_{2}, such that R_{1} is a path from x_{3}^{\prime} to u and R_{2} is a path from y^{\prime} to v. Let $Z=\left\{x_{1}^{\prime}, a^{\prime}, b^{\prime}, z_{4}^{\prime}, \ldots, z_{n}^{\prime}\right\}$ and $W=\left\{v^{\prime}, x_{2}^{\prime}, c^{\prime}, w_{4}^{\prime}, \ldots, w_{n}^{\prime}\right\}$. By Lemma $7, \kappa\left(C_{2}\right)=\kappa\left(C_{3}\right)=n$. By Lemma 4, there are n internally disjoint paths $Z_{1}, Z_{2}, \ldots, Z_{n}$ from z to Z and n internally disjoint paths $W_{1}, W_{2}, \ldots, W_{n}$ from w to W such that $x_{1}^{\prime} \in Z_{1}, a^{\prime} \in Z_{2}, b^{\prime} \in Z_{3}, z_{i}^{\prime} \in Z_{i}, v^{\prime} \in W_{1}, x_{2}^{\prime} \in W_{2}, c^{\prime} \in W_{3}$ and $w_{i}^{\prime} \in W_{i}$ for $4 \leq i \leq n$. Let $T_{1}=P_{1} \cup x_{1} x_{1}^{\prime} \cup Z_{1} \cup y y^{\prime} \cup R_{2} \cup v v^{\prime} \cup W_{1}, T_{2}=P_{2} \cup x_{2} x_{2}^{\prime} \cup W_{2} \cup x x^{\prime} \cup P \cup a a^{\prime} \cup Z_{2}, T_{3}=P_{3} \cup x_{3} x_{3}^{\prime} \cup R_{1} \cup u u^{\prime} \cup T \cup b b^{\prime} \cup c c^{\prime} \cup Z_{3} \cup W_{3}$ and let $T_{i}=P_{i} \cup \widehat{T_{i}} \cup x_{i} X_{i}^{\prime} \cup z_{i} z_{i}^{\prime} \cup w_{i} w_{i}^{\prime} \cup Z_{i} \cup W_{i}$ for $4 \leq i \leq n$, then n internally disjoint trees connecting S are obtained in $H C N_{n}$.

If $y^{\prime} \in V\left(C_{n+2}\right)$. See Fig. 11. By (2) of Lemma 1 , there are edges $z_{i} z_{i}^{\prime} \in E_{c r}\left(C_{i+1}, C_{2}\right)$ and $w_{i} w_{i}^{\prime} \in E_{c r}\left(C_{i+1}, C_{3}\right)$ such that $z_{i}, w_{i} \in V\left(C_{i+1}\right), z_{i}^{\prime} \in V\left(C_{2}\right)$ and $w_{i}^{\prime} \in V\left(C_{3}\right)$ for $3 \leq i \leq n+1$. Let $Z=\left\{x_{1}^{\prime}, z_{3}^{\prime}, z_{4}^{\prime}, \ldots, z_{n+1}^{\prime}\right\}$ and $W=\left\{x_{2}^{\prime}, w_{3}^{\prime}, w_{4}^{\prime}, \ldots, w_{n+1}^{\prime}\right\}$. By Lemma $7, \kappa\left(C_{2}\right)=\kappa\left(C_{3}\right)=n$. By Lemma 4, there are n internally disjoint paths $Z_{1}, Z_{2}, \ldots, Z_{n}$ from z to Z and n internally disjoint paths $W_{1}, W_{2}, \ldots, W_{n}$ from w to W such that $x_{1}^{\prime} \in Z_{1}, z_{i}^{\prime} \in Z_{i-1}, x_{2}^{\prime} \in W_{1}$ and $w_{i}^{\prime} \in W_{i-1}$ for $3 \leq i \leq n+1$. As C_{i} is connected for each $i \in\left[2^{n}\right]$, there is a tree T connecting $x^{\prime}, y^{\prime}, z_{n+1}$ and w_{n+1} in C_{n+2}. In addition, there is a tree \widehat{T}_{i-1} connecting x_{i}^{\prime}, z_{i} and w_{i} in C_{i+1} for $3 \leq i \leq n$. Let $T_{1}=P_{1} \cup\left(P_{2} \backslash\{x\}\right) \cup Z_{1} \cup W_{1} \cup x_{1} x_{1}^{\prime} \cup x_{2} x_{2}^{\prime}, T_{i-1}=$ $P_{i} \cup \widehat{T}_{i-1} \cup Z_{i-1} \cup W_{i-1} \cup x_{i} X_{i}^{\prime} \cup z_{i} z_{i}^{\prime} \cup w_{i} w_{i}^{\prime}$ for $3 \leq i \leq n$ and $T_{n}=T \cup Z_{n} \cup W_{n} \cup x x^{\prime} \cup y y^{\prime} \cup z_{n+1} z_{n+1}^{\prime} \cup w_{n+1} w_{n+1}^{\prime}$, then n internally disjoint trees connecting S are obtained in $H C N_{n}$.

If $y^{\prime} \in V\left(H C N_{n}\right) \backslash \cup_{i=1}^{n+2} V\left(C_{i}\right)$. Without loss of generality, let $y^{\prime} \in V\left(C_{n+3}\right)$. See Fig. 12. By (2) of Lemma 1, there are edges $z_{i} z_{i}^{\prime} \in E_{c r}\left(C_{i+1}, C_{2}\right)$ and $w_{i} w_{i}^{\prime} \in E_{c r}\left(C_{i+1}, C_{3}\right)$ such that $z_{i}, w_{i} \in V\left(C_{i+1}\right), z_{i}^{\prime} \in V\left(C_{2}\right)$ and $w_{i}^{\prime} \in V\left(C_{3}\right)$ for $3 \leq i \leq n+1$. Let $Z=\left\{x_{1}^{\prime}, z_{3}^{\prime}, z_{4}^{\prime}, \ldots, z_{n+1}^{\prime}\right\}$ and $W=\left\{x_{2}^{\prime}, w_{3}^{\prime}, w_{4}^{\prime}, \ldots, w_{n+1}^{\prime}\right\}$. By Lemma $7, \kappa\left(C_{2}\right)=\kappa\left(C_{3}\right)=n$. By Lemma 4, there are n internally disjoint paths $Z_{1}, Z_{2}, \ldots, Z_{n}$ from z to Z and n internally disjoint paths $W_{1}, W_{2}, \ldots, W_{n}$ from w to W such that $x^{\prime} \in Z_{1}, z_{i}^{\prime} \in Z_{i-1}, x_{2}^{\prime} \in W_{1}$ and $w_{i}^{\prime} \in W_{i-1}$ for $3 \leq i \leq n+1$. By Lemma 3, $\operatorname{HCN}_{n}\left[V\left(C_{n+2} \cup C_{n+3}\right)\right]$ is connected. Thus, it

Fig. 12. The illustration of $y^{\prime} \in V\left(C_{n+3}\right)$.

Fig. 13. The illustration of Case 2 of Lemma 12.
contains a tree T that connects $x^{\prime}, z_{n+1}, w_{n+1}$ and y^{\prime}. As C_{i+1} is connected for $3 \leq i \leq n+1$, there is a tree \widehat{T}_{i-1} connecting x_{i}^{\prime}, z_{i} and w_{i} in C_{i+1} for $3 \leq i \leq n+1$. Let $T_{1}=P_{1} \cup Z_{1} \cup W_{1} \cup\left(P_{2} \backslash\{x\}\right) \cup x_{1} x_{1}^{\prime} \cup x_{2} x_{2}^{\prime}, T_{i-1}=P_{i} \cup \widehat{T}_{i-1} \cup Z_{i-1} \cup W_{i-1} \cup x_{i} x_{i}^{\prime} \cup z_{i} z_{i}^{\prime} \cup w_{i} w_{i}^{\prime}$ for $3 \leq i \leq n$ and $T_{n}=T \cup Z_{n} \cup W_{n} \cup x x^{\prime} \cup z_{n+1} z_{n+1}^{\prime} \cup y y^{\prime} \cup w_{n+1} w_{n+1}^{\prime}$, then n internally disjoint trees connecting S are obtained in $H C N_{n}$.

Case 2. $x^{\prime} \in V\left(C_{2}\right)$ and $x_{i}^{\prime} \in V\left(C_{3}\right)$ for some $i \in[n]$.
Without loss of generality, let $x^{\prime} \in V\left(C_{2}\right), x_{1}^{\prime} \in V\left(C_{3}\right)$ and $x_{i}^{\prime} \in V\left(C_{i+2}\right)$ for $2 \leq i \leq n$. See Fig. 13. By (2) of Lemma 1, there are edges $z_{i} z_{i}^{\prime} \in E_{c r}\left(C_{i+2}, C_{2}\right)$ and $w_{i} w_{i}^{\prime} \in E_{c r}\left(C_{i+2}, C_{3}\right)$ such that $z_{i}^{\prime} \in V\left(C_{2}\right), w_{i}^{\prime} \in V\left(C_{3}\right)$ and $z_{i}, w_{i} \in V\left(C_{i+2}\right)$ for $2 \leq i \leq n$. Let $Z=\left\{x^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}, \ldots, z_{n}^{\prime}\right\}$ and $W=\left\{x_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}, \ldots, w_{n}^{\prime}\right\}$. By Lemma $7, \kappa\left(C_{2}\right)=\kappa\left(C_{3}\right)=n$. By Lemma 4, there are n internally disjoint paths $Z_{1}, Z_{2}, \ldots, Z_{n}$ from z to Z and n internally disjoint paths $W_{1}, W_{2}, \ldots, W_{n}$ from w to W such that $x^{\prime} \in Z_{1}, z_{i}^{\prime} \in Z_{i}, x_{1}^{\prime} \in W_{1}$ and $w_{i}^{\prime} \in W_{i}$ for $2 \leq i \leq n$. As C_{i+2} is connected for each $i \in\left[2^{n}\right]$, there is a tree T_{i}^{\prime} connecting x_{i}^{\prime}, z_{i} and w_{i} in C_{i+2} for $2 \leq i \leq n$. Let $T_{1}=P_{1} \cup Z_{1} \cup W_{1} \cup x x^{\prime} \cup x_{1} x_{1}^{\prime}$ and $T_{i}=P_{i} \cup T_{i}^{\prime} \cup Z_{i} \cup W_{i} \cup x_{i} x_{i}^{\prime} \cup z_{i} z_{i}^{\prime} \cup w_{i} w_{i}^{\prime}$ for $2 \leq i \leq n$, then n internally disjoint trees connecting S are obtained in $H C N_{n}$.

Lemma 13. Let $C_{1}, C_{2}, \ldots, C_{2^{n}}$ be the 2^{n} clusters of $H C N_{n}$ for $n \geq 3$. Let $S=\{x, y, z, w\} \subseteq V\left(H C N_{n}\right)$ such that $x, y \in V\left(C_{1}\right), z \in V\left(C_{2}\right)$ and $w \in V\left(C_{3}\right)$. Let $P_{1}, P_{2}, \ldots, P_{n}$ be the n internally disjoint paths between x and y in C_{1}. Let $x_{i} \in N(x) \cap V\left(P_{i}\right)$ for $i \in[n]$ and $N[x]=\left\{x, x_{1}, x_{2}, \ldots, x_{n}\right\}$. If there is at most one cross edge between $N[x]$ and $V\left(C_{2} \cup C_{3}\right)$, then there are n internally disjoint trees connecting S in $H C N_{n}$.

Proof. Let x^{\prime}, y^{\prime} and x_{i}^{\prime} be the outside neighbors of x, y and x_{i} for $1 \leq i \leq n$, respectively. By Lemma 2 , the outside neighbors of vertices in $N[x]$ belong to different clusters of $H C N_{n}$. To prove the result, the following cases are considered.

Case 1 . There is exactly one cross edge between $N[x]$ and $V\left(C_{2} \cup C_{3}\right)$.
Without loss of generality, let $x_{1}^{\prime} \in V\left(C_{2}\right), x_{i}^{\prime} \in V\left(C_{i+2}\right)$, and $x^{\prime} \in V\left(C_{n+3}\right)$ for $2 \leq i \leq n$. See Fig. 14. By (2) of Lemma 1 , there are edges $z_{i} z_{i}^{\prime} \in E_{c r}\left(C_{i+2}, C_{2}\right)$ for $2 \leq i \leq n$ and $w_{i} w_{i}^{\prime} \in E_{c r}\left(C_{i+2}, C_{3}\right)$ for $2 \leq i \leq n+1$ such that $z_{i}, w_{i} \in V\left(C_{i+2}\right), z_{i}^{\prime} \in$

Fig. 14. The illustration of Case 1 of Lemma 13.

Fig. 15. The illustration of Case 2 of Lemma 13.
$V\left(C_{2}\right)$ and $w_{i}^{\prime} \in V\left(C_{3}\right)$. As C_{i} is connected for each $i \in\left[2^{n}\right]$, there is a path P between x^{\prime} and w_{n+1} in C_{n+3} and a tree \widehat{T}_{i} connecting x_{i}^{\prime}, z_{i} and w_{i} in C_{i+2} for $2 \leq i \leq n$. Let $Z=\left\{x_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}, \ldots, z_{n}^{\prime}\right\}$ and $W=\left\{w_{2}^{\prime}, w_{3}^{\prime}, w_{4}^{\prime}, \ldots, w_{n+1}^{\prime}\right\}$. By Lemma $7, \kappa\left(C_{2}\right)=\kappa\left(C_{3}\right)=n$. By Lemma 4, there are n internally disjoint paths $Z_{1}, Z_{2}, \ldots, Z_{n}$ from z to Z and n internally disjoint paths $W_{1}, W_{2}, \ldots, W_{n}$ from w to W such that $x_{1}^{\prime} \in Z_{1}, z_{i}^{\prime} \in Z_{i}, w_{n+1}^{\prime} \in W_{1}$, and $w_{i}^{\prime} \in W_{i}$ for $2 \leq i \leq n$. Let $T_{1}=P_{1} \cup Z_{1} \cup P \cup W_{1} \cup x_{1} x_{1}^{\prime} \cup x x^{\prime} \cup w_{n+1} w_{n+1}^{\prime}$ and $T_{i}=P_{i} \cup \widehat{T}_{i} \cup Z_{i} \cup W_{i} \cup x_{i} x_{i}^{\prime} \cup z_{i} z_{i}^{\prime} \cup w_{i} w_{i}^{\prime}$ for $2 \leq i \leq n$. Then n internally disjoint trees connecting S are obtained in $H C N_{n}$.

Case 2. There is no cross edge between $N[x]$ and $V\left(C_{2} \cup C_{3}\right)$.
Without loss of generality, let $x_{i}^{\prime} \in V\left(C_{i+3}\right)$ for $1 \leq i \leq n$. See Fig. 15. By (2) of Lemma 1, there are edges $z_{i} z_{i}^{\prime} \in E_{c r}\left(C_{i+3}, C_{2}\right)$ and $w_{i} w_{i}^{\prime} \in E_{c r}\left(C_{i+3}, C_{3}\right)$ such that $z_{i}, w_{i} \in V\left(C_{i+3}\right), z_{i}^{\prime} \in V\left(C_{2}\right)$ and $w_{i}^{\prime} \in V\left(C_{3}\right)$ for $1 \leq i \leq n$. Let $Z=\left\{z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{n}^{\prime}\right\}$ and $W=\left\{w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{n}^{\prime}\right\}$. By Lemma $7, \kappa\left(C_{2}\right)=\kappa\left(C_{3}\right)=n$. By Lemma 4, there are n internally disjoint paths $Z_{1}, Z_{2}, \ldots, Z_{n}$ from z to Z and n internally disjoint paths $W_{1}, W_{2}, \ldots, W_{n}$ from w to W such that $z_{i}^{\prime} \in Z_{i}$ and $w_{i}^{\prime} \in W_{i}$ for $1 \leq i \leq n$. As C_{i+3} is connected, there is a tree \widehat{T}_{i} connecting x_{i}^{\prime}, z_{i} and w_{i} in C_{i+3} for $1 \leq i \leq n$. Let $T_{i}=P_{i} \cup \widehat{T}_{i} \cup Z_{i} \cup W_{i} \cup x_{i} x_{i}^{\prime} \cup z_{i} z_{i}^{\prime} \cup w_{i} w_{i}^{\prime}$ for $1 \leq i \leq n$, then the result is obtained.

Lemma 14. Let $C_{1}, C_{2}, \ldots, C_{2^{n}}$ be the 2^{n} clusters of $H C N_{n}$ for $n \geq 3$. Let $S=\{x, y, z, w\} \subseteq V\left(H C N_{n}\right)$ such that $\left|S \cap V\left(C_{i}\right)\right|=1$, $\left|S \cap V\left(C_{j}\right)\right|=1,\left|S \cap V\left(C_{k}\right)\right|=1$ and $\left|S \cap V\left(C_{\ell}\right)\right|=1, i, j, k, \ell$ are mutually distinct and $i, j, k, \ell \in\left[2^{n}\right]$, then there are n internally disjoint trees connecting S in $H C N_{n}$.

Proof. Without loss of generality, let $\left|S \bigcap V\left(C_{1}\right)\right|=1,\left|S \bigcap V\left(C_{2}\right)\right|=1,\left|S \bigcap V\left(C_{3}\right)\right|=1$, and $\left|S \bigcap V\left(C_{4}\right)\right|=1$. Let $x \in V\left(C_{1}\right), y \in V\left(C_{2}\right), z \in V\left(C_{3}\right)$, and $w \in V\left(C_{4}\right)$, see Fig. 16. By (2) of Lemma 1 and $2^{n} \geq n+4$ for $n \geq 3$, one can choose n vertices from C_{1}, say $x_{1}, x_{2}, \ldots, x_{n}$, such that $x_{i}^{\prime} \in V\left(C_{i+4}\right)$, where x_{i}^{\prime} is the outside neighbor of x_{i} in $H C N_{n}$ and $1 \leq i \leq n$. Then choose n vertices $y_{1}, y_{2}, \ldots, y_{n}$ from C_{2}, n vertices $z_{1}, z_{2}, \ldots, z_{n}$ from C_{3} and n vertices $w_{1}, w_{2}, \ldots, w_{n}$ from C_{4} such that $y_{i}^{\prime}, z_{i}^{\prime}, w_{i}^{\prime} \in V\left(C_{i+4}\right)$, where $y_{i}^{\prime}, z_{i}^{\prime}$ and w_{i}^{\prime} are the outside neighbors of y_{i}, z_{i} and w_{i}, respectively. Let

Fig. 16. The illustration of the proof of Lemma 14.
$X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}, Z=\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$. By Lemma 4, there are n internally disjoint paths $X_{1}, X_{2}, \ldots, X_{n}$ from x to X such that $x_{i} \in X_{i}, n$ internally disjoint paths $Y_{1}, Y_{2}, \ldots, Y_{n}$ from y to Y such that $y_{i} \in Y_{i}, n$ internally disjoint paths $Z_{1}, Z_{2}, \ldots, Z_{n}$ from z to Z such that $z_{i} \in Z_{i}$ and n internally disjoint paths $W_{1}, W_{2}, \ldots, W_{n}$ from w to W such that $w_{i} \in W_{i}$, respectively. It is possible that one of the paths $X_{i} s\left(r e s p . Y_{i} s, Z_{i} s, W_{i} s\right)$ is a single vertex. As C_{i+4} is connected, there is a tree \widehat{T}_{i} connecting $x_{i}^{\prime}, y_{i}^{\prime}, z_{i}^{\prime}$ and w_{i}^{\prime} in C_{i+4} for each $i \in[n]$. Let $T_{i}=X_{i} \cup Y_{i} \cup Z_{i} \cup W_{i} \cup \widehat{T}_{i} \cup x_{i} x_{i}^{\prime} \cup y_{i} y_{i}^{\prime} \cup z_{i} z_{i}^{\prime} \cup w_{i} w_{i}^{\prime}$ for each $i \in[n]$. Then n internally disjoint S-trees $T_{i} \mathrm{~s}$ for $1 \leq i \leq n$ are obtained in $H C N_{n}$.

Theorem 2. Let $H C N_{n}$ be an n-dimensional hierarchical cubic network, then $\kappa_{4}\left(H C N_{n}\right)=n$.
Proof. As $H C N_{n}$ is $(n+1)$-regular, by Lemma $8, \kappa_{4}\left(H C N_{n}\right) \leq \delta-1=n$. To prove the result, we just need to show that $\kappa_{4}\left(H C N_{n}\right) \geq n$. Let $S=\{x, y, z, w\}$, where x, y, z and w are any four distinct vertices of $H C N_{n}$. By the symmetry of $H C N_{n}$, we prove the result by considering the following cases.

Case 1. x, y, z and w belong the same cluster of $H C N_{n}$.
Without loss of generality, let $S \subseteq V\left(C_{1}\right)$. Recall that C_{1} is a copy of Q_{n}. By Theorem $1, \kappa_{4}\left(Q_{n}\right)=n-1$. Then there are $n-1$ internally disjoint S-trees $T_{1}, T_{2}, \ldots, T_{n-1}$ in C_{1}. Let $x^{\prime}, y^{\prime}, z^{\prime}$ and w^{\prime} be the outside neighbors of x, y, z and w in $H C N_{n}$, respectively. Then $\left\{x^{\prime}, y^{\prime}, z^{\prime}, w^{\prime}\right\} \subseteq V\left(H C N_{n} \backslash C_{1}\right)$. By Lemma 3, $H C N_{n} \backslash C_{1}$ is connected. Thus, there is a tree \widehat{T}_{n} connecting $x^{\prime}, y^{\prime}, z^{\prime}$ and w^{\prime} in $H C N_{n} \backslash C_{1}$. Let $T_{n}=\widehat{T}_{n} \bigcup x x^{\prime} \bigcup y y^{\prime} \bigcup z z^{\prime} \bigcup w w^{\prime}$, then $T_{1}, T_{2}, \ldots, T_{n}$ are n-internally disjoint S-trees in HCN_{n} and the result is as desired.

Case 2. x, y, z and w belong to two distinct clusters of $H C N_{n}$.
By Lemmas 10 and 11 , n-internally disjoint S-trees $T_{1}, T_{2}, \ldots, T_{n}$ can be obtained in $H C N_{n}$.
Case 3. x, y, z and w belong to three distinct clusters of $H C N_{n}$.
Without loss of generality, let $x, y \in V\left(C_{1}\right), z \in V\left(C_{2}\right)$ and $w \in V\left(C_{3}\right)$. By Lemma $7, \kappa\left(C_{1}\right)=n$, thus there are n internally disjoint paths $P_{1}, P_{2}, \ldots, P_{n}$ between x and y in C_{1}. Let $x_{i} \in N(x) \cap V\left(P_{i}\right)$ for $i \in[n]$ and $N[x]=\left\{x, x_{1}, x_{2}, \ldots, x_{n}\right\}$. By Lemma 2, the outside neighbors of vertices in $N[x]$ belong to different clusters of $H C N_{n}$. Thus, there are at most two cross edges between $N[x]$ and $V\left(C_{2} \cup C_{3}\right)$. By Lemmas 12 and 13 , n-internally disjoint S-trees $T_{1}, T_{2}, \ldots, T_{n}$ can be obtained in $H C N_{n}$.

Case 4. x, y, z and w belong to four distinct clusters of $H C N_{n}$.
By Lemma $14, n$-internally disjoint S-trees $T_{1}, T_{2}, \ldots, T_{n}$ can be obtained in $H C N_{n}$.
Thus, $\kappa_{4}\left(H C N_{n}\right)=n$ and the result is desired.
Corollary 1. Let $H C N_{n}$ be an n-dimensional hierarchical cubic network for $n \geq 3$, then $\kappa_{3}\left(H C N_{n}\right)=n$.
Proof. By Theorem 2, $\kappa_{4}\left(H C N_{n}\right)=n$. As $H C N_{n}$ is $(n+1)$-regular, by Lemma 9, $\kappa_{3}\left(H C N_{n}\right)=n$. Thus, the result holds.

4. Concluding remarks

The hierarchical cubic network $H C N_{n}$ has some attractive properties to design interconnection networks. In this paper, we focus on $\kappa_{4}\left(H C N_{n}\right)$ of the hierarchical cubic network $H C N_{n}$ and obtain that $\kappa_{4}\left(H C N_{n}\right)=n$ for $n \geq 3$. As a corollary, we obtain that $\kappa_{3}\left(H C N_{n}\right)=n$ for $n \geq 3$. In future work, the generalized r-connectivity of the hierarchical cubic network for $r \geq 5$ would be an interesting problem.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 11971054 and 11731002), Fundamental Research Funds for the Central Universities (2019YJS192).

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2007.
[2] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (4) (2010) 360-367.
[3] Y.C. Chen, J.J.M. Tan, Restricted connectivity for three families of interconnection networks, Appl. Math. Comput. 188 (2) (2007) $1848-1855$.
[4] W.-K. Chiang, R.-J. Chen, Topological properties of hierarchical cubic networks, J. Syst. Archit. 42 (4) (1996) 289-307.
[5] J.-S. Fu, G.-H. Chen, Hamiltonicity of the hierarchical cubic network, Theory Comput. Syst. 35 (1) (2002) 59-79.
[6] J.-S. Fu, G.-H. Chen, D.-R. Duh, Node-disjoint paths and related problems on hierarchical cubic networks, Networks 40 (2002) $142-154$.
[7] K. Ghose, K.R. Desai, Hierarchical cubic network, IEEE Trans. Parallel Distrib. Syst. 6 (1995) 427-435.
[8] M. Hager, Pendent tree-connectivity, J. Combin. Theory. 38 (1985) 179-189.
[9] J.H. Lee, S.M. Park, K.Y. Chwa, Recursive circulant: a new topology for multicomputer networks, in: Proceedings of Internet Symposium Parallel Architectures, Algorithms and Networks (ISPAN94) Japan, IEEE Press, New York, 1994, pp. 73-80.
[10] S.S. Li, X.L. Li, Note on the hardness of generalized connectivity, J. Comb. Optim. 24 (2012) 389-396.
[11] S.S. Li, W. Li, X.L. Li, The generalized connectivity of complete bipartite graphs, Ars Combin. 104 (2012) 65-79.
[12] H.Z. Li, X.L. Li, Y.P. Mao, Y.F. Sun, Note on the generalized connectivity, Ars Combin. 114 (2014) 193-202.
[13] H.Z. Li, X.L. Li, Y.F. Sun, The generalized 3-connectivity of cartesian product graphs, Discrete Math. Theor. Comput. Sci. 14 (1) (2012) 43-54.
[14] S.S. Li, X.L. Li, W.L. Zhou, Sharp bounds for the generalized connectivity $\kappa_{3}(G)$, Discrete Math. 310 (2010) 2147-2163.
[15] H.Z. Li, Y.B. Ma, W.H. Yang, Y.F. Wang, The generalized 3-connectivity of graph products, Appl. Math. Comput. 295 (2017) 77-83.
[16] S.S. Li, Y.T. Shi, J.H. Tu, The generalized 3-connectivity of cayley graphs on symmetric groups generated by trees and cycles, Graphs Combin. 33 (2017) 1195-1209.
[17] S.S. Li, J.H. Tu, C.Y. Yu, The generalized 3-connectivity of star graphs and bubble-sort graphs, Appl. Math. Comput. 274 (2016) 41-46.
[18] H.Z. Li, B.Y. Wu, J.X. Meng, Y.B. Ma, Steiner tree packing number and tree connectivity, Discrete Math. 341 (2018) 1945-1951.
[19] S.W. Lin, Q.H. Zhang, The generalized 4-connectivity of hypercubes, Discrete Appl. Math. 220 (2017) 60-67.
[20] H. Whitney, Congruent graphs and connectivity of graphs, J. Amer. Math. Soc. 54 (1932) 150-168.
[21] S.-K. Yun, K.-H. Park, The optimal routing algorithm in hierarchical cubic network and its properties, IEICE Trans. Inform. Syst. E78-D (4) (1995) 436-443.
[22] S.-K. Yun, K.-H. Park, Comments on hierarchical cubic network, IEEE Trans. Parallel Distrib. Syst. 9 (1998) 410-414.
[23] S. Zhao, R. Hao, The generalized connectivity of alternating group graphs and (n, k)-star graphs, Discrete Appl. Math. 251 (2018) $310-321$.
[24] S. Zhao, R. Hao, The generalized 3-connectivity of two kinds of cayley graphs, Comput. J. 62 (2019) 144-149.
[25] S. Zhao, R. Hao, The generalized 4-connectivity of exchanged hypercubes, Appl. Math. Comput. 347 (2019) $342-353$.
[26] S. Zhao, R. Hao, J. Wu, The generalized 3-connectivity of some regular networks, J. Parallel Distrib. Comput. 133 (2019) 18-29.
[27] S. Zhao, R. Hao, L. Wu, The generalized connectivity of (n, k)-bubble-sort graphs, Comput. J. 62 (2019) 1277-1283.
[28] S. Zhou, S. Song, X. Yang, L. Chen, On conditional fault tolerance and diagnosability of hierarchical cubic networks, Theoret. Comput. Sci. 609 (2016) 421-433.

[^0]: * Corresponding author.

 E-mail addresses: 17118434@bjtu.edu.cn (S.-L. Zhao), rxhao@bjtu.edu.cn (R.-X. Hao), jiewu@temple.edu (J. Wu).

